Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(4): 1077-1084, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38588591

RESUMEN

Uremic toxins (UTs) are microbiota-derived metabolites that accelerate the progression of kidney damage in patients with chronic kidney disease (CKD). One of the major UTs involved in CKD progression is p-cresol-sulfate (PCS), derived from dietary l-tyrosine (l-Tyr). Here, we engineered a probiotic strain of Escherichia coli Nissle 1917, to convert l-Tyr to the nontoxic compound p-coumaric acid via tyrosine ammonia lyase (TAL). First, a small metagenomic library was assessed to identify the TAL with the greatest whole-cell activity. Second, accessory genes implicated in the import of l-Tyr and export of PCA were overexpressed to enhance l-Tyr degradation by 106% and 56%, respectively. Last, random mutagenesis coupled to a novel selection and screening strategy was developed that identified a TAL variant with a 25% increase in whole-cell activity. Taken together, the final strain exhibits a 183% improvement over initial whole-cell activity and provides a promising candidate to degrade l-Tyr mediated PCS accumulation.


Asunto(s)
Escherichia coli , Insuficiencia Renal Crónica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Tóxinas Urémicas , Mutagénesis , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
2.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309259

RESUMEN

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Asunto(s)
Homocistinuria , Metionina , Humanos , Ratones , Animales , Metionina/metabolismo , Metionina/uso terapéutico , Voluntarios Sanos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animales de Enfermedad , Homocistinuria/tratamiento farmacológico , Homocistinuria/metabolismo , Racemetionina , Homocisteína/uso terapéutico
3.
Mol Syst Biol ; 18(3): e10539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35253995

RESUMEN

Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non-human primates, demonstrating the strain's ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.


Asunto(s)
Hiperoxaluria , Animales , Simulación por Computador , Femenino , Humanos , Hiperoxaluria/etiología , Hiperoxaluria/orina , Masculino , Ratones , Oxalatos/metabolismo , Oxalatos/orina
4.
Nat Commun ; 12(1): 2805, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990606

RESUMEN

Engineered bacteria (synthetic biotics) represent a new class of therapeutics that leverage the tools of synthetic biology. Translational testing strategies are required to predict synthetic biotic function in the human body. Gut-on-a-chip microfluidics technology presents an opportunity to characterize strain function within a simulated human gastrointestinal tract. Here, we apply a human gut-chip model and a synthetic biotic designed for the treatment of phenylketonuria to demonstrate dose-dependent production of a strain-specific biomarker, to describe human tissue responses to the engineered strain, and to show reduced blood phenylalanine accumulation after administration of the engineered strain. Lastly, we show how in vitro gut-chip models can be used to construct mechanistic models of strain activity and recapitulate the behavior of the engineered strain in a non-human primate model. These data demonstrate that gut-chip models, together with mechanistic models, provide a framework to predict the function of candidate strains in vivo.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Terapia Biológica/métodos , Microbioma Gastrointestinal , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Fenilcetonurias/terapia , Animales , Células CACO-2 , Simulación por Computador , Escherichia coli/metabolismo , Ingeniería Genética , Células HT29 , Humanos , Técnicas In Vitro , Microfluídica , Fenilalanina/metabolismo , Fenilcetonurias/metabolismo , Fenilcetonurias/microbiología , Primates , Biología Sintética
5.
Nat Biotechnol ; 36(9): 857-864, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30102294

RESUMEN

Phenylketonuria (PKU) is a genetic disease that is characterized by an inability to metabolize phenylalanine (Phe), which can result in neurotoxicity. To provide a potential alternative to a protein-restricted diet, we engineered Escherichia coli Nissle to express genes encoding Phe-metabolizing enzymes in response to anoxic conditions in the mammalian gut. Administration of our synthetic strain, SYNB1618, to the Pahenu2/enu2 PKU mouse model reduced blood Phe concentration by 38% compared with the control, independent of dietary protein intake. In healthy Cynomolgus monkeys, we found that SYNB1618 inhibited increases in serum Phe after an oral Phe dietary challenge. In mice and primates, Phe was converted to trans-cinnamate by SYNB1618, quantitatively metabolized by the host to hippurate and excreted in the urine, acting as a predictive biomarker for strain activity. SYNB1618 was detectable in murine or primate feces after a single oral dose, permitting the evaluation of pharmacodynamic properties. Our results define a strategy for translation of live bacterial therapeutics to treat metabolic disorders.


Asunto(s)
Terapia Genética , Fenilcetonurias/terapia , Biomarcadores/metabolismo , Escherichia coli/genética , Humanos , Fenilcetonurias/metabolismo
6.
ACS Synth Biol ; 7(5): 1229-1237, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29652493

RESUMEN

Gram-positive Staphylococcus aureus infection that results in pneumonia, urinary tract infection, and in severe cases, sepsis, has recently been classified as a serious threat to public health. Rapid and cost-effective detection of these infections are costly and time-consuming. Here, we present probiotic lactic acid bacteria engineered to detect autoinducer peptide-I (AIP-I), a quorum sensing molecule produced by Staphylococcus sp. during pathogenesis. We achieved this by adapting the well-characterized agr quorum sensing ( agrQS) from Staphylococcus aureus into Lactobacillus reuteri. The engineered biosensor is able to detect AIP-I levels in the nanomolar to micromolar range. We further investigated the function of the biosensor to detect real-time changes in AIP-I levels to understand the dynamics of Staphylococcus aureus under various strenuous conditions. The developed sensors would be useful for detection of Staphylococcus contamination in hospital settings and for high-throughput drug screening.


Asunto(s)
Proteínas Bacterianas/análisis , Técnicas Biosensibles/métodos , Limosilactobacillus reuteri/genética , Péptidos Cíclicos/análisis , Probióticos , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo/análisis , Ciclohexanonas/farmacología , Eritromicina/farmacología , Regulación Bacteriana de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Limosilactobacillus reuteri/metabolismo , Microorganismos Modificados Genéticamente , Péptidos Cíclicos/metabolismo , Proteínas Quinasas/genética , Percepción de Quorum , Sensibilidad y Especificidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Factores de Tiempo
7.
Sci Adv ; 1(5)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26229984

RESUMEN

Circadian oscillators are posttranslationally regulated and affect gene expression in autotrophic cyanobacteria. Oscillations are controlled by phosphorylation of the KaiC protein, which is modulated by the KaiA and KaiB proteins. However, it remains unclear how time information is transmitted to transcriptional output. We show reconstruction of the KaiABC oscillator in the noncircadian bacterium Escherichia coli. This orthogonal system shows circadian oscillations in KaiC phosphorylation and in a synthetic transcriptional reporter. Coexpression of KaiABC with additional native cyanobacterial components demonstrates a minimally sufficient set of proteins for transcriptional output from a native cyanobacterial promoter in E. coli. Together, these results demonstrate that a circadian oscillator is transplantable to a heterologous organism for reductive study as well as wide-ranging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...